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Abstract. The TGS 2600 was the first low-cost solid state sensor that shows a weak response to ambient levels of CH4 (e.g.,

range ≈1.8–2.7 ppm). Here we present an empirical function to correct the TGS 2600 signal for temperature and (absolute)

humidity effects and address the long-term reliability of two identical sensors deployed from 2012 to 2018. We assess the

performance of the sensors at 30-minute resolution and aggregated to weekly medians. Over the entire period the agreement

between TGS-derived and reference CH4 concentrations measured by a high-precision Los Gatos Research instrument was R25

= 0.42, with better results during summer (R2 = 0.65 in summer 2012). Using absolute instead of relative humidity for the

correction of the TGS 2600 sensor signals reduced the typical deviation from the reference to less than ±0.1 ppm over the full

range of temperatures from –41°C to 27°C. At weekly resolution the two sensors showed a downward drift of signal voltages

indicating that after 10–13 years a TGS 2600 may have reached its end of life. While the true trend in CH4 concentrations

measured by the high-quality reference instrument was 10.1 ppb yr−1 (2012–2018), part of the downward trend in sensor10

signal (ca. 40–60%) may be due to the increase in CH4 concentration, because the sensor voltage decreases with increasing CH4

concentration. Weekly median diel cycles tend to agree surprisingly well between the TGS 2600 and reference measurements

during the snow-free season, but in winter the agreement is lower. We suggest developing separate functions for deducing

CH4 concentrations from TGS 2600 measurements under cold and warm conditions. We conclude that the TGS 2600 sensor

can provide data of research-grade quality if it is adequately calibrated and placed in a suitable environment where cross-15

sensitivities to gases other than CH4 is of no concern.

Keywords: Toolik lake, Northern Alaska, Methane, Trace gas sensor, SnO2 sensor, Leak detector.

1 Introduction

Low-cost trace gas sensors open new deployment opportunities for environmental observations. Still, their long-term perfor-

mance in real-world applications is largely unknown, and thus, scientific research with such low-cost sensors is challenged20

with a high risk of failure and questionable data quality. Hence low-cost sensors are only considered as a complementary
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source of information on air quality (e.g. Lewis et al., 2018). Here we report on a six-year (2012–2018) deployment of two

low-cost Figaro TGS 2600 methane (CH4) sensors during summer and winter conditions in the relatively harsh low Arctic

climate of northern Alaska to explore the long-term stability and reliability of CH4 concentration estimates. The sensors were

previously deployed over Toolik lake during the ice-free season 2011 (Eugster and Kling, 2012), where similar values between25

TGS-derived and reference CH4 concentrations were only found if measurements were integrated over at least 6 hours, or if

they were aggregated to mean diel cycles over the season. Other studies have deployed the same sensor type in complex rural

and urban environments along the Colorado Front Range (Collier-Oxandale et al., 2018), in an oil and gas production region

(Greeley, Colorado; Casey et al., 2019), and in urban South Los Angeles (Shamasunder et al., 2018). An application on an

unmanned aerial vehicle, however, did not successfully detect CH4 hotspots (Falabella et al., 2018). These are all pioneering30

studies, but mostly restricted to a few days to months of measurements. Thus, our study is the first long-term comparison of

high-precision measurements to those from CH4 sensitive, low-cost sensors under challenging climatic conditions.

Typically, new sensors are first calibrated under controlled conditions in a laboratory environment. Extensive calibration

tests with a similar low-cost sensor (Figaro TGS2611-E00) from the same manufacturer as our TGS 2600 have been carried

out by van den Bossche et al. (2017). Despite the care taken in their calibration effort, the residual CH4 concentration after35

calibration was still on the order of ±1.7 ppm, which is acceptable for chamber flux measurements, e.g. over water (as e.g.,

done by Duc et al., 2019), but not sufficient to measure ambient atmospheric concentrations, which are of the same order of

magnitude as the calibration uncertainty. The issue of important differences between laboratory assessments of low-cost sensor

and their real-world performance is well known and typically relates to different data correction and calibration approaches in

real-world than laboratory applications (Lewis et al., 2018). Hence we decided to use outdoor measurements obtained over a40

wide range of temperatures and relative humidity – the major cross-sensitivities experienced by such sensors – and derive a

calibration function via parameter extraction using this data set. Our goals were thus to (1) establish a statistical calibration

function from field measured conditions that can also be used in different contexts to linearize the TGS 2600 sensor signal

(which then can still be fine-tuned with a two-point calibration in a specific application); (2) assess the reliability of the TGS

2600 low-cost sensor under winter and summer conditions in the Arctic over seven years of continuous deployment; and (3)45

explore potential improvements for sensor data processing, which includes (3a) wind effects that are neglected in laboratory

environments, and (3b) artificial neural networks (ANN) to find out whether results can be improved over standard statistical

regression methods for calibration of the sensor.

2 Material and methods

2.1 Study site50

Field measurements were carried out at the Toolik wet sedge site (TWE, 68°37′27.62′′ N, 149°36′08.10′′ W, 728.14 m ele-

vation, WGS 84 datum) where seasonal eddy covariance flux measurements were carried out during the summer seasons of

2010–2015 and partially during winters starting in 2014 until 15 June 2016, with the continuation as a meteorological sta-

tion until present. The site is a wetland that is a local source of CH4 with a flux rate that is roughly one order of magnitude
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stronger than adjacent Toolik lake, where the Eugster and Kling (2012) study was performed. The site is a wet graminoid55

tundra dominated by sedge species, namely cotton grass (Eriophorum angustifolium) and Carex aquatilis (Walker and Everett,

1991).

2.2 Instrumentation and measurements

Two Figaro TGS 2600 sensors (Figaro, 2005b, a) that were already deployed over Toolik lake (TOL) during the ice-free season

2011 (Eugster and Kling, 2012) were installed at the TWE site in late June 2012 (Fig. 1). The TGS 2600 is a high-sensitivity60

solid-state sensor for the detection of air contaminants (Figaro, 2005a). It is sensitive to methane at low concentrations, but also

to hydrogen, carbon monoxide, iso-butane, and ethanol. It is the only low-cost solid-state sensor that we are aware of for which

the manufacturer indicates a sensitivity to methane even under ambient (≈2 ppm) methane concentrations, whereas most other

sensors are only sensitive at concentrations that exceed ambient levels by at least one or two orders of magnitude. This high

sensitivity to low methane concentrations comes at the expense that no specific molecular filter prevents the other components65

to reach the sensor surface. Thus, our considerations made here assume that deployment is made in an area like e.g., the Arctic

where levels of carbon monoxide, iso-butane, ethanol and hydrogen are rather constant and do not vary as strongly as does

methane, so that the sensor signal can be interpreted as a first approximation as a methane concentration signal. For additional

details on the TGS 2600 sensor the reader is referred to Eugster and Kling (2012).

The TWE site receives line power from the Toolik Field Station (TFS) power generator. During the snow and ice-free70

summer season (typically late June to mid-August) measurements are almost interruption free, but during the cold season

(typically September to late May) longer power interruptions limit the winter data coverage. Nevertheless, this is the first study

that provides low-cost sensor methane concentration measurements over a temperature range from Arctic winter temperatures

of –41°C and to a relatively balmy 27°C during short periods of the Arctic summer. Reference CH4 concentrations were

measured by a Fast Methane Analyzer (FMA, Los Gatos Research, Inc., San Jose, CA, USA; years 2012–2016) which was75

replace by a Fast Greenhouse Gas Analyzer for combined CH4/CO2/H2O concentration measurements (FGGA, Los Gatos

Research, Inc., San Jose, CA, U.S.A.; since 2016). Until 18 June 2016 the CH4 concentrations were calculated as 1-minute

averages from the raw eddy covariance flux data files. We report all gas concentrations in mixing ratios by volume (ppm or ppb

dry mole fractions). The FMA and FGGA sampling rate was set to 20 Hz, and the flow rate of sample air was ca. 20 L min−1.

After the termination of eddy covariance flux measurements, the FGGA measurements were continued with the instrument’s80

internal pump (flow rate ca. 0.65 L min−1) with 1 Hz raw data sampling. In addition to digital recording, the CH4 signal

was converted to an analog voltage that was recorded on a CR23X data logger (Campbell Scientific Inc. [CSI], Logan, UT,

USA). The same data logger also recorded air temperature and relative humidity (HMP45AC, CSI), wind speed and wind

direction (034B Windset, MetOne, Grants Pass, OR, USA), plus ancillary meteorological and soil variables not used in this

study. Sensors were measured every 5 seconds and 1-minute averages were stored on the logger. These data were then screened85

for outliers and instrumental errors and failures, and 30-minute averages were calculated for the present analysis.

Because the TGS 2600 sensors only show a weak response to CH4, but are highly sensitive to temperature and humidity, a

LinPicco A05 Basic sensor (IST Innovative Sensor Technology, Wattwil, Switzerland) was added next to the TGS 2600 (see
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Fig. 1). The A05 is a capacitive humidity module that also has a Pt1000 platinum 1 kΩ thermistor on board to measure ambient

temperature. The relative humidity output by the A05 is a linearized voltage in the range 0–5 V, and the Pt1000 thermistor was90

measured in three-wire half bridge mode using an excitation voltage of 4.897 V.

2.3 Calculations

The basic principle of operation of the TGS 2600 sensor was described in detail by Eugster and Kling (2012). The methane

sensing mechanisms of different active materials used in solid state sensors was described by Aghagoli and Ardyanian (2018).

The TGS 2600 uses a SnO2 micro crystal surface (Figaro, 2005b). Whereas the manufacturer defines the sensor signal as95

Rs/R0, the ratio of the electrical resistance Rs of the heated sensor material surface normalized over its resistance R0 in the

air under absence of CH4, Hu et al. (2016) define the sensor signal as the ratio betweenRs andRg , the resistance of the surface

in pure gas of interest (here CH4). In all cases, considerations of technical sensor information is made for high concentrations

of CH4 (e.g., 200 ppm for a SnO2 surface according to Hu et al. (2016), not for ambient concentrations in the typical range

1.7–4 ppm (or less). Hence, some adaptations are always necessary because present-day sensors are not yet designed for such100

low concentrations. In order to simplify calculations compared to what we presented in Eugster and Kling (2012) – which

closely followed the technical information provided by the manufacturer (Figaro, 2005b, a) – we define the sensor signal as

Sc =Rs/R0, but with R0 arbitrarily set to the resistance observed when the sensor delivers V0 = 0.8 V output at Vc = 5.0

V supply voltage. The highest voltages measured at TWE were 0.7501 and 0.7683 V from sensors #1 and #2, respectively

(which theoretically corresponds to the lowest CH4 concentrations). With these assumptions the sensor signal Sc can easily be105

approximated as a function of the inverse of the measured TGS signal voltage Vs,

Sc =
RS

R0
≈ 0.952381 · 1

Vs
− 0.1904762 . (1)

The full derivation is

Rs

R0
=

Vc ·RL

Vs
−RL

Vc ·RL

V0
−RL

=

Vc ·RL−Vs ·RL

Vs

Vc ·RL−Vs ·RL

V0

=

=
V0 (Vc−Vs)RL

Vs (Vc−V0)RL
=
V0 (Vc−Vs)
Vs (Vc−V0)

=110

=
V0

Vc−V0

(
Vc

Vs
− 1

)
=

1
Vs
· Vc ·V0

Vc−V0
− V0

Vc−V0
.

Here RL is the load resistor over which Vs is measured (see Figaro (2005a) or Eugster and Kling (2012), for more details),

but which can be eliminated in this algebraic simplification.

To compute absolute humidity, we used the Magnus equation to estimate saturation vapor pressure esat (in hPa) at ambient

temperature Ta (in °C),115

esat = 6.107 · 10a·Ta/(b+Ta) ,
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with coefficients a = 7.5 and b = 235.0 for Ta ≥ 0°C, and a = 9.5 and b = 265.5 for Ta < 0°C.

Actual vapor pressure e (hPa) was then determined as

e= esat ·
rH

100%
,

with relative humidity rH in percent, and converted to absolute humidity ρv (kg m−3) with120

ρv =
e

Ta + 273.15
· p

p− e ·
100
Rv

≈ 0.217 · e

Ta + 273.15
,

with p atmospheric pressure (hPa), and Rv the gas constant for water vapor (461.53 J kg−1 K−1).

2.4 Statistical analyses

Statistical analyses were performed with R version 3.5.2 (R Core Team, 2018). Trend analyses were performed for both trend

in CH4 concentration and drift of TGS 2600 measurements using the Mann-Kendall trend test implemented in the rkt package125

that is based on Marchetto et al. (2013). The annual linear trend (or drift) was calculated using the robust Theil-Sen estimator

Akritas et al. (1995) using weekly median values, and the significance of the trend (or drift) was assessed using Kendall’s Tau

parameter. All trend and drift estimates were significant at p < 0.05. The highest two-sided p-value of the presented results was

p = 0.000054 and thus no detailed information on p-values is given when statistical significance of trends or drift is mentioned

in the following.130

For assessing the quality of the proposed calculation of CH4 concentrations from TGS 2600 sensors we inspected weekly

aggregated data using four key indicators:

Bias – the mean of the difference of each 30-min averaged pair of CH4 concentrations in ppm, CH4,TGS – CH4,ref;

Stability – the bias expressed as a percent deviation from the reference CH4 concentration, (CH4,TGS – CH4,ref)/CH4,ref·100%;

Variability – the mean relative deviation of the 95% confidence interval (CI) observed with the TGS 2600 sensor from the135

corresponding 95% CI of the CH4 reference measurements (in percent), (CI95%,TGS / CI95%,ref – 1) ·100%;

Correlation of median diel cycles – Pearman’s product-moment correlation coefficient between hourly-aggregated median

diel cycles of CH4 measured by the TGS 2600 and reference instruments.

In addition to conventional linear model (least square method) fits we used an artificial neural network approach. This was

performed in Python 3.7.1 using MLPRegressor from sklearn.neural_network version 0.20.2 (Pedregosa et al., 2011). We used140

a network with four hidden layers of size 500, 100, 50 and 5, respectively, and an adaptive learning rate. Learning was done with

the data obtained during the calibration period from first measurements until 31 March 2017 and the remaining data (1 April

2017 to 31 December 2018) were used for validation.

3 Results and discussion

CH4 concentrations estimated from TGS 2600 measurements during the cold seasons differed strongly from the reference145

measurements when the Eugster and Kling (2012) approach was used (not shown); that approach translated the information
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from the technical specifications of the TGS 2600 sensor (Figaro, 2005b, a) to outdoor applications. With temperatures above

freezing the agreement with the CH4 reference measurements was within ±0.1 ppm (Fig. 2), but not so during cold conditions

(Ta < 0°C). The differences between TGS estimates and CH4 reference were largest with the Eugster and Kling (2012) approach

when relative humidity was between 50 and 90% (Fig. 3a). When converting relative humidity to absolute humidity, the results150

became satisfactory for higher absolute humidity values > 0.004 kg m−3 (Fig. 3b). Because absolute humidity > 0.004 kg

m−3 is only possible at temperatures > 0°C it appears quite obvious that temperature and humidity corrections of solid state

sensors most likely do not relate to relative humidity (which is a ratio and not a physical variable of atmospheric water content),

but to either actual vapor pressure (in hPa) or absolute humidity (in kg m−3). In all tested models absolute humidity performed

marginally better than vapor pressure (measured by R2, not shown), hence we suggest the following model and parameterization155

to estimate CH4 concentrations in ppm from TGS 2600 signal voltage measurements:

CH4 = 1.425 + 0.12Sc + 0.375/Sc− 0.0065Ta + (2)

+53.3ρv + 0.0022Sc ·Ta− 0.0017Ta/Sc +

+4.9Sc · ρv − 67.4ρv/Sc− 0.39Sc ·Ta · ρv

+1.15Ta · ρv/Sc ,160

with Sc the dimensionless sensor signal (see Eq. 1), Ta ambient air temperature in °C, and ρv absolute humidity in kg m−3. The

parameter estimates were derived from the entire dataset 2012–2018 for TGS sensor #1 (Table 1, “entire period”). For other

sensors the result from Eq. (2) can be considered as a linearized signal that can be fine-tuned with a sensor-specific two-point

calibration as suggested in Section 3.4 of Eugster and Kling (2012).

3.1 Performance of the TGS 2600 sensor at 30-minute resolution165

Using Eq. (2) yields satisfying agreement with 30-minute averaged data under both typical low Arctic summer and winter

conditions (Fig. 4) with an overall R2 of 0.42 (Table 1). A detailed inspection of four representative seven-week time periods

at full 30-minute resolution is shown in Figures 5–8. Typical summer conditions at the beginning of this study (Fig. 5) and

towards the end of the analyzed period (Fig. 6) indicate that the short-term agreement (R2 = 0.65, Fig. 5) is better when the

TGS sensor was still relatively new than at age seven (R2 = 0.38, Fig. 6), but the variability decreased from –42% to –9% with170

no relevant difference in bias and stability (0.01 ppm and 0.4% vs. 0.00 ppm and 0.0%, respectively). In winter the timing

of most events is correctly captured (Fig. 7) with a R2 of 0.45, but the dynamics are not satisfactorily captured by the TGS

sensor, indicated by a 59% underestimation of the 95% CI during this mid-winter period. The transition from warm to cold

season (Fig. 8) shows a mixture of days, where the regular diel cycle, which is typical for the warm season, is still adequately

captured, but the dynamics of periods with air temperature <0°C (see Fig. 4) when CH4 concentrations tend to be highest as175

in winter (Fig. 7), are not adequately captured. Still, with a R2 of 0.51 (Fig. 8) more than 50% of the variance observed in the

30-minute averaged CH4 reference measurements is captured by the low-cost TGS 2600 sensor.
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3.2 Performance of weekly aggregated data

The TGS 2600 is not expected to provide short-term accuracy comparable to high-quality instrumentation (see also Lewis et al.,

2018). However, Eugster and Kling (2012) argued that such measurements still may provide additional insights as compared to180

the passive samplers described by Godbout et al. (2006a, b), integrating over longer time frames. Thus, here we inspected the

performance of weekly aggregated estimates derived from the TGS 2600 in order to inspect drift of the two sensors and their

performance over the seven-year deployment period. Note, that in Eq. (2) we did not include a drift correction. Figure 9 shows

weekly medians of sensor signals, the difference between the raw signals from both sensors mounted at the same position (Fig.

1), and the agreement with the reference signal. The two TGS 2600 sensors (#1 and #2) showed a trend in their signals of185

–18.8 mV yr1 and –15.5 mV yr−1, respectively (Fig. 9a,b). Thus, with typical signals on the order of 200–700 mV (Fig. 9a)

the lowest (winter) readings may no longer be measurable after 10–13 years of continuous operation, indicating the end of life

of a TGS 2600.

Figure 10 shows the weekly median bias, variability, and the correlation between the weekly aggregated median diel cycle

of CH4 at hourly resolution between the TGS #1 measurements and the reference. Despite the trend of the sensor signal shown190

in Figure 9a,b both the bias and variability primarily show a seasonal pattern with a slightly negative bias (around –0.02 ppm)

during peak growing season and a corresponding positive deviation in mid-winter when temperatures can be well below –30°C

(Fig. 10a). The variability (Fig. 10b) shows the inverse pattern of the bias. If bias is expressed as the relative bias (i.e., stability),

the stability vs. variability plot (Fig. 11) shows points lying uniformly around the line of a –1:1 relationship (R2 = 0.67).

3.3 Linear trend and drift estimates195

All linear trend estimates were statistically significant (see Section 2.4). However, our measurements started with warm-season

measurements only (2012–2014) that were successively expanded to include cold season measurements. Thus, all interpre-

tation of the trends and drifts presented here should be considered with caution given the long gaps in data due to technical

challenges operating such equipment under adverse winter conditions. The CH4 concentration trend observed with the high-

quality reference measurements was 10.1 ppb yr−1. This is 2.5 times the trend observed from 2005–2011 by NOAA (28.6 ±200

0.9 ppb or 4.09 ppb yr−1; Hartmann et al. (2014); their Table 2.1), but of the same order of magnitude reported by Nisbet

et al. (2014) for 2013 (last year covered by that study) for latitudes north of the Tropic of Cancer. Thus, this trend may be real

and hence all trends seen in low-cost sensor signals are not necessarily solely an artefact of such sensors. It however remains

a challenge to deduce the true trend in CH4 concentrations over longer time periods using such a low cost sensor because

of drifting signals. Thus, we inspected the drift of the TGS 2600 derived concentration with respect to the (true) CH4 trend205

observed with the high-quality reference instrument. These drifts appear to be smaller than the true trend, but are still consider-

able: the bias of TGS-derived CH4 concentrations drifted by 4–6 ppb yr−1 (40–60% of actual trend) and variability drifted by

–0.24% yr−1. They provide encouraging results suggesting that with occasional (infrequent) calibration against a high-quality

standard, e.g. using a traveling standard operating during a few good days with adequate coverage of the near-surface diel cycle

of CH4, TGS 2600 measurements might be suitable for the monitoring of CH4 concentrations also in other areas. As shown210
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in Figure 10c the correlation of median diel cycles between TGS estimates and CH4 reference is one of the weak points in the

current performance of the TGS 2600 sensors. Also, we observed a significant negative trend of the correlation coefficient of

–0.051 yr−1 (Fig. 10c). However, the key finding is that the typical diel cycle during the warm season (air temperature > 0°C)

disappears during winter conditions (Figs 4, 7) and thus separate transfer functions for warm and cold temperatures might be

a solution for future studies (Table 1). Our Eq. (2) is thus on purpose derived from the entire dataset to provide a starting point215

for more elaborate fine-tuning in projects where this is desired.

3.4 Potential of using artificial neural networks

Casey et al. (2019) found that artificial neural networks (ANNs) outperformed linear models in mitigating curvature and linear

trends in trace gas measurements when used with the same set of input variables during a three-month comparison period.

To inspect the potential of ANNs at our Arctic long-term dataset, we added the ANN results to Figures 5–8. In summer220

(Figures 5, 6) we did not find a substantial advantage of ANN over the linear approach of Eq. (2) in terms of root mean square

error (RMSE) of the prediced CH4 concentrations (Table 1). In particular, the ANN was unable to better reflect the skewed

distribution of diel variations of CH4 concentrations and tended to underestimate daytime minimum concentration without a

clear improvement of the fit to nocturnal peaks. It should be noted that at this latitude the sun does not set between 24 May and

20 July, thus nocturnal conditions are clearly different from conditions at lower latitudes such as the ones investigated by Casey225

et al. (2019). Similarly, the transition from warm to cold season (Fig. 8) does also not provide strong evidence of improvements

with an ANN that uses the same input variables as a linear model. However, in winter when the diel cycle of all variables is

less dominant than during the warm and transition seasons, the ANN approach is capable of producing a more realistic CH4

estimate from TGS 2600 signals than the linear model approach (e.g., Fig. 7). This is not very surprising as the prediction range

of a linear model decreases linearly with the amplitude of the input variables (e.g., in absolute humidity, which does not vary230

strongly at sub-zero temperatures), whereas an ANN does not have such linearity constraints.

The drawback of ANNs is the difficulty in determining why the fit has become better than an empirical linear model fit. On

the other side, this could encourage future work to better understand the physical response of TGS sensors to cold environments.

In summary, we strongly recommend to focus on physical relationships, because it is unclear what scientific insights an ANN

fit could offer in addition to the technically nicer fits to data.235

3.5 Suggestions for future work

The residuals of Eq. (2) are homoscedastic both when plotted against air temperature (Fig. 12a) or absolute humidity (Fig.

12b). Deviations are generally constrained within ±0.1 ppm or better, but with higher variability at both temperature ends

where data coverage is poor (gray bars at bottom of Fig. 12a) as temperatures < –30°C were not frequently covered due to

technical problems with the measurement station, or at summer temperatures > 20°C that are still rather rare at this low Arctic240

latitude (Hobbie and Kling, 2014). A slightly different picture emerges for low absolute humidity: 56% of measurements are

at lower humidities than the saturation humidity at 0°C (0.0049 kg m−3), thus the rather homgenous variances at low humidity
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(Fig. 12b) indicate that humidity is not of concern at low temperatures, and future attempts for improvements should rather

focus on humidity > 0.01 kg m−3 and temperatures > 20°C that are not normally found in the Arctic.

Another approach was taken by van den Bossche et al. (2017) who performed an in-depth laboratory calibration of the very245

similar but less sensitive Figaro TGS 2611-E00 sensor (Figaro, 2013, the manufacturer only shows a response above 300 ppm

CH4) at different temperatures and relative humidity over a CH4 calibration range starting at ≈ 2 ppm ambient concentration

up to 10 ppm CH4. Despite the effort, the residual concentrations remained large (range of ca. –1.5 ppm to +1.1 ppm) – too

large for the application we present here. Our efforts to calibrate our TGS 2600 sensors in a laboratory climate chamber in a

similar way was not satisfactory (Eugster, unpublished), hence our approach presented here to determine the sensor behavior250

from long-term outdoor measurements under real-world conditions. Contrastingly, Kneer et al. (2014) are convinced that “to

be of use for advanced applications metal-oxide gas sensors need to be carefully prepared and characterized in laboratory

environments prior to deployment”. We however do not fully agree because laboratory conditions simplify the real world too

much, and it is difficult to carry out laboratory treatments from –41°C to 27°C as it would be required for our Arctic site. The

data we present indicate that most likely it is absolute humidity, not relative humidity, that should be used for such calibrations,255

which in principle should provide the best quality results if the relevant factors are known and can be included in the calibration

set-up.

Using absolute humidity in place of relative humidity for the correction of the TGS 2600 was already attempted by Collier-

Oxandale et al. (2018), which contrasts with the manufacturer’s suggestion Figaro (2005a). However, as mentioned above,

relative humidity is not a physical entity and hence using actual vapor pressure or absolute humidity may indeed be a better260

approach to understand the TGS 2600 sensor sensitivity to environmental conditions other that CH4 concentrations.

The TGS 2600 sensor’s best performance is in applications where passive samplers would be another option (see also Eugster

and Kling, 2012). Contrastingly, using the TGS 2600 for short-term measurements (resolution of seconds to minutes) has not

yet led to satisfactory results (Kirsch, 2012; Falabella et al., 2018). In our dataset we found that adding wind speed to the

calculation model slightly improved the model fit during the warm season, but because no reliable continuous winter wind265

speed measurements were possible at the TWE site we did not include wind speed in our Eq. (2). However, this may be a key

component for understanding the variability of TGS 2600 measurements when flying an unmanned aerial vehicle (UAV) where

turbulent conditions may change within seconds to minutes. To address this additional factor, we produced a heat loss model,

assuming that the sensor correction is related to the cooling of the heated surface of the solid state sensor, which has a nominal

surface temperature Ts = 400°C (Falabella et al., 2018) that is the typical operation temperature of SnO2-Ni2O3 sensors (Hu270

et al., 2016). Our candidate model for heat loss (HL in W) was

HL∼ ξ ·u2 · (Ts−Ta) · (ρd ·Cd + ρv ·Cv) , (3)

with umean horizontal wind speed (m s−1), Ts and Ta sensor surface and ambient air temperature (K), respectively, ρd density

of dry air (kg m−3), ρv absolute humidity (kg m−3), and Cd and Cv heat capacity of dry air and water vapor, respectively (J

kg−1 K−1). The scaling coefficient ξ is a best fit model parameter (units: s m). The assumption made here was that the wind275

speed governs the eddy diffusivity of heat transported along the temperature gradient between the sensor surface and ambient
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air, and the moisture correction is only associated with the fact that water vapor has a higher heat capacity (1859 J kg−1 K−1)

than dry air (1005.5 J kg−1 K−1), and hence the heat capacity of moist air increases accordingly with ρv . However, although

this approach is more mechanistic than Eq. (2), it’s ability to predict CH4 concentration from TGS 2600 measurements was

much worse than that of the empirical linear model and ANN approaches (Table 1). But in order to make further progress on280

improving the transfer function from TGS 2600 signals to defensible CH4 concentrations it will be essential to increase our

understanding of the physical processes that influence such measurements. This is not an easy task since there is a substantial

proprietary knowledge that is unrevealed by the manufacturer. Newer, promising developments are underway that work with

a mixed potential sensor using tin doped indium oxide and platinum electrodes in combination with yttria-stabilized zirconia

electrolyte that show a logarithmic signal range of 0–10 mV for the range of 1–3 ppm CH4 of interest for ambient air studies285

(Sekhar et al., 2016). The basic principle that the active metal-oxide is charged with O2 (or O2−), which then oxidizes CH4,

seems to be similar to the SnO2-based TGS 2600; thus there is a good chance that our findings for the TGS 2600 are also useful

for assessing the performance of newer solid-state sensors with different active materials.

4 Conclusions

We present the first long-term deployment of two identical TGS 2600 low-cost sensors that show a (weak) sensitivity to290

ambient levels of CH4 (here: range 1.824–2.682 ppm as measured by a high-quality Los Gatos Research reference instrument).

We suggest a new transfer function to correct the TGS 2600 signal for cross-sensitivity to ambient temperature and humidity

that also yields satisfactory results under cold climate (Arctic) conditions with temperatures down to –40°C. This was only

possible by using absolute humidity and not relative humidity for the correction. With this correction determined over the

entire 2012–2018 data period, the 30-minute average CH4 concentration could be derived from TGS 2600 measurements295

within ±0.1 ppm. The two completely different regimes of diel CH4 concentration variations during the cold season (typically

with a snow cover and frozen surface waters) and the warm season (when plants are active in the low Arctic) suggest that further

improvements can be obtained by more specifically developing separate transfer functions for cold and warm conditions. The

use of an artificial neural network shows the potential for improvements in transfer functions under very cold conditions.

We consider the quality of TGS 2600 derived CH4 estimates adequate if aggregated over reasonable periods (e.g., days or300

one week), but caution should be taken with application where short-term response is of key relevance (e.g., within seconds to

minutes required by mobile measurements with UAVs). The deterioration of the sensor signal over time indicates that a TGS

2600 operated under ambient conditions as in our deployment at a low Arctic site in northern Alaska (Toolik wet sedge site)

has an estimated life time of ca. 10–13 years. Thus, there is a potential beyond preliminary studies if the TGS 2600 sensor is

adequately calibrated and placed in a suitable environment where cross-sensitivities to gases other than CH4 is of no concern.305

Data availability. The data used in this study can be downloaded from the ETH Zurich Research Collection via doi:10.3929/ethz-b-

000369689 [note that the dataset will be uploaded after acceptance of the paper, thus the reserved doi is not yet active]
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Figure 1. Two TGS 2600 trace gas sensors and the LinPicco A05 temperature and relative humidity sensor (a) inside the weather protection,

and (b) the mounting position of the TGS weather protection and reference CH4 gas inlets at the Toolik wet sedge eddy covariance flux site.
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Figure 2. Difference between TGS2600 and reference CH4 measurements (30-minute averages) as a function of air temperature when using

the Eugster and Kling (2012) conversion. Agreement was good when ambient temperature was above freezing. The horizontal color bar

shows the ±0.1 ppm range around a perfect agreement. The green band shows the inter-quartile range of bin-averaged differences (Figaro

sensor #1), and dashed lines show the extent of the 95% confidence intervals. Gray bars at the bottom show number of 30-minute averages

in each bin. The scale bar (1000 hours) at right specifies their size.
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Figure 3. Difference between TGS2600 and reference CH4 measurements (30-minute averages) as a function of (a) relative humidity (in

%) and (b) absolute humidity (in kg m−3). The horizontal color bar shows the ±0.1 ppm range around a perfect agreement. The green

band shows the inter-quartile range of bin-averaged differences (Figaro sensor #1), and dashed lines show the extent of the 95% confidence

intervals. Gray bars at the bottom show number of 30-minute averages in each bin. The scale bar (1000 hours) at right specifies their size.
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Figure 4. Overview over annual courses of 30-minute averaged air temperature (green) and CH4 concentrations (blue and red). Pale color

bands show the daily inter-quartile range (50% of values between first and third quartile) of measurements from all years. Solid lines show

actual measurements. Red lines are the reference CH4 measurements, and blue lines show the CH4 concentration derived from TGS 2600

measurements. Actual measurements show 30-minute mean values.

17

https://doi.org/10.5194/amt-2019-402
Preprint. Discussion started: 11 December 2019
c© Author(s) 2019. CC BY 4.0 License.



C
H

4 
(p

pm
)

1.85

1.90

1.95

2.00

2.05

2.10

29 Jun 06 Jul 13 Jul 20 Jul 27 Jul 03 Aug 10 Aug 17 Aug

2012

Reference
TGS 2600 all
TGS 2600 c/v
ANN

all c/v ANN
R2 = 0.65 0.63 0.64
bias (ppm) 0.01 0.01 0.01
stability 0.4% 0.7% 0.6%
variability −42% −49% −50%

(a)

1.90 1.95 2.00 2.05

1.90

1.95

2.00

2.05

TGS 2600 CH4 (ppm)

R
ef

er
en

ce
 C

H
4 

(p
pm

)

(b)

F
re

qu
en

cy

−0.2 −0.1 0.0 0.1 0.2

0

100

200

300

400

500

∆CH4 (ppm)

(c)

Figure 5. Timeseries (a) of TGS #1 derived CH4 during a 7-week snow- and ice-free period in the first year of the long-term deployment

(2012), (b) correlation with reference concentration, and (c) residuals (TGS 2600 – Reference) of 30-minute averaged measurements. Thin

solid lines in (a) show the result when all data are used with Eq. (2); reference concentration is shown with a red bold line; c/v shows an

alternative fit from splitting the available data into a calibration and a validation part; and the dashed line shows the performance of an

artificial neural network (ANN) fit.
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Figure 6. As in Figure 5 but with measurements from a 7-week snow- and ice-free period in 2017 at sensor age of seven years.
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Figure 7. As in Figure 5 but with measurements from a 7-week period in mid winter with temperatures plunging down to –40°C. High CH4

concentrations coincide with the coldest temperatures (see Fig. 4).

20

https://doi.org/10.5194/amt-2019-402
Preprint. Discussion started: 11 December 2019
c© Author(s) 2019. CC BY 4.0 License.



C
H

4 
(p

pm
)

1.90

1.95

2.00

2.05

2.10

2.15

15 Sep 22 Sep 29 Sep 06 Oct 13 Oct 20 Oct 27 Oct 03 Nov

2018

Reference
TGS 2600 all
TGS 2600 c/v
ANN

all c/v ANN
R2 = 0.51 0.36 0.57
bias (ppm) 0.01 0.02 0.01
stability 0.7% 0.8% 0.7%
variability −34% −25% −26%

(a)

1.90 1.95 2.00 2.05 2.10

1.90

1.95

2.00

2.05

2.10

TGS 2600 CH4 (ppm)

R
ef

er
en

ce
 C

H
4 

(p
pm

)

(b)

F
re

qu
en

cy

−0.2 −0.1 0.0 0.1 0.2

0

100

200

300

400

∆CH4 (ppm)

(c)

Figure 8. As in Figure 5 but with measurements from a 7-week period during the transition from fall to early winter.
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Figure 9. (a) Weekly median sensor signals from both TGS 2600 sensors, (b) relative signal difference between the two TGS 2600 sensors

in percent of the signal measured with the primary sensor #1, and (c) CH4 derived with Eq. (2) for TGS sensor #1 and measured by the Los

Gatos Research reference instrument. Symbol size is proportional to relative data coverage.
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Figure 10. (a) Weekly median bias, (b) median variability, and (c) correlation between weekly median diel cycles of TGS 2600 sensor #1.

Symbol size is proportional to relative data coverage.
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Figure 11. Variability and stability (relative bias) of weekly median TGS 2600 sensor #1 are inversely related and plot along the –1:1 line.

Symbol size is proportional to relative data coverage.
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Figure 12. Residuals of 30-minute averaged TGS 2600 vs. reference CH4 measurements as a function of (a) air temperature, and (b) absolute

humidity. Colored areas show the inter-quartile range (50% CI), bold lines show the median, and dashed lines show the bin-averaged 95%

confidence interval. Bin size was 1°C and 0.0002 kg m−3, respectively. Gray bars at the bottom show number of 30-minute averages in each

bin; the scale bar (1000 hours) at right specifies their size.
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Table 1. Goodness of fit of TGS 2600 derived CH4 concentrations (30-minute averages) obtained from a linear model using air temperature

and absolute humidity (Eq. 2), a heat loss model (Eq. 3), and an artificial neural network (ANN). For the goodness of fit the coefficient of

determination (R2) and the root mean square error of the residuals (RMSE) are reported for the overall model and separately for warm and

cold conditions. The parametrization of the linear model given in Eq. (2) used the entire period 2012–2018. For a more rigorous model test,

all three approaches were calibrated with the data measured in years 2014–2016, and the remaining data (2012–2013 and 2017–2018) were

used for validation.

Linear Model Heat Loss Model Artificial Neural Network

Entire period Calibration Validation Calibration Validation Calibration Validation

Overall

R2 0.42 0.45 0.21 0.17 0.28 0.51 0.54

RMSE (ppm) 0.03 0.03 0.04 0.03 0.05 0.03 0.03

Warm conditions (Ta ≥ 0°C)

R2 0.48 0.52 0.29 0.18 0.18 0.56 0.47

RMSE (ppm) 0.03 0.03 0.03 0.03 0.04 0.03 0.03

Cold conditions (Ta < 0°C)

R2 0.32 0.34 0.03 0.16 0.05 0.44 0.37

RMSE (ppm) 0.03 0.03 0.05 0.03 0.05 0.03 0.03
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